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1 Introduction

How many arithmetic operations are needed to compute a polynomial? Let us look at an example.

De�ne

p(x1, x2, . . . , xn) =
∑
S�[n]

∏
i2S
xi . (1)

If one implements p as a circuit according to (1), the Σ-gate has fan-in 2n. So the whole circuit

has size O(n2n). However, there is a much smaller circuit for p because we have

p(x1, x2, . . . , xn) =
∏
i2[n]

(xi + 1) .

Hence, p has a circuit of size O(n).

A major challenge is to prove lower bounds for the circuit size of explicit polynomials. Before

the LST-result only polynomial lower bounds were known. The best bounds were

• Ω(n3/ log2 n), for ΣΠΣ-circuits, by Kayal, Saha, Tavenas (2016),

• Ω(n2.5), for ΣΠΣΠ-circuits, by Gupta, Saha, Thankey (2020).

The new lower bound for ΣΠΣ-circuits is a super-polynomial bound: nΩ(
p
d), for a polynomial

of degree d. Hence, this is a major step ahead in proving lower bounds!

2 Preliminaries

Let F be a �eld of characteristic zero and f 2 F[X] be a multivariate polynomial of (total) degree d

over a set X of variables. Polynomial f is homogeneous, if every nonzero monomial of f has exactly

degree d. We call f multilinear, if every variable of f has individual degree 1. Let (X1, X2, . . . , Xd)

be a partition of the variable set X. We say that f is set-multilinear with respect to this partition,
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if f is a homogeneous multilinear polynomial of degree d such that every nonzero monomial of f

has exactly one variable from every Xi, for i = 1, 2, . . . , d.

Let C be an arithmetic circuit that computes some homogeneous polynomial. We call circuit C

homogeneous, if every gate of C computes an homogeneous polynomial. Similarly, we say that C

is set-multilinear, if every gate of C computes a set-multilinear polynomial. In more detail, let C

compute a set-multilinear polynomial for a partition (X1, X2, . . . , Xd) of the variables. The gates

of C then compute set-multilinear polynomials over sub-partitions (Xi1 , Xi2 , . . . , Xid 0 ), for some

d 0 � d. For a + -gate of C, the two input polynomial must be over the same sub-partition, whereas

for a � -gate, they must be over disjoint sub-partitions.

3 Theorem

The lower bounds are proved for the Iterated Matrix Multiplication (IMM) problem which is

de�ned as follows. Given m � m matrices X1, X2, . . . , Xd, for some m,d � 1. The task is to

compute the (1, 1)-entry of the product X1X2 � � �Xd,

IMMm,d(X1, X2, . . . , Xd) = (X1X2 � � �Xd)1,1 .

Theorem 3.1 ([LST21]). Let d,m such that d = o(logm). Let ∆ > 0 be some constant. Any

circuit of product-depth ∆ that computes IMMm,d over F has size md
1

exp(∆)
.

Here, we will focus on the special case of Theorem 3.1 where ∆ = 1.

Theorem 3.2 ([LST21]). Let d,m such that d = O(logm). Any ΣΠΣ-circuit that computes

IMMm,d over F has size mΩ(
p
d).

The lower bound for ΣΠΣ-circuits is tight, up to constants in the exponent. In this note, we

present a proof of the simplest case, i.e. of Theorem 3.2. We try to keep the proof as simple as

possible, and even over-simplify a bit by ignoring some issues in the choice of the parameters.

The argument is split into the following three sections. In Section 4, we show how to transform

a given general circuit of depth 3 into an equivalent set-multilinear circuit of depth 5 with slightly

larger size. A reader who just wants to understand the lower bound for set-multilinear circuits can

safely skip this section.

In Section 5, we de�ne the complexity measure and give some examples of its applications.

Then, in Section 6, we de�ne the hard polynomial, a projection of IMM, and show that set-

multilinear circuits of depth 5 that compute it have super-polynomial size. Reversing the above

transformations will prove Theorem 3.2.

4 Transformation into a set-multilinear circuit

Let f be a set-multilinear polynomial with n variables and degree d, and let C be a circuit that com-

putes f with product-depth ∆ and size s. We �rst transform C into an equivalent set-multilinear

circuit C 0. The transformation is done in two steps by the following two lemmas.
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Lemma 4.1 (Homogenization). Let C be a circuit of size s and product-depth ∆ that computes

an n-variate homogeneous polynomial f of degree d. Then there is a circuit equivalent to C

that is homogeneous, of product-depth 2∆ and size 2O(
p
d) poly(s).

Proof. We show the case ∆ = 1. That is, given a ΣΠΣ-circuit C, we show that there exists an

equivalent homogeneous ΣΠΣΠΣ-circuit of size 2O(
p
d) poly(s).

Let q be the polynomial computed at a product-gate of C. Let q =
∏s
i=1 `i, where the `i's

are linear polynomials. Our goal is to construct a homogeneous circuit that computes q(d), the

homogeneous degree-d part of q. Then we are done because it just remains to sum up these q(d)'s to

compute f. Note that the terms of degree di�erent from d must cancel themselves, as the outcome

of C, i.e. f, has no such terms. These cancellations we now implement in the circuitry by ignoring

them.

Suppose all the `i's have no constant term. Then the product gate that computes q is already

homogeneous. If s = d, then we have q = q(d) and we are done.

Inhomogeneity comes with the constant terms. Hence, the interesting case is when only, say,

d 0 < d of the `i's have constant term 0. These we can leave unchanged. Then it su�ces to extract

the homogeneous degree-(d− d 0) part from the remaining s− d 0 polynomials `i. For simplicity of

notation, we assume now that all the `i's have a nonzero constant term. Moreover, we can extract

the constant terms as factors from each `i, so that all constant terms become 1. Hence, it su�ces

to consider the case where q = c
∏s
i=1 `i, for some constant c, and

`i = `
0
i + 1,

where ` 0i, is the homogeneous degree-1 part of `i, for i = 1, 2, . . . , s.

There is an obvious way to express q(d) now:

q(d) = c
∑
T�[s]
|T |=d

∏
i2T
` 0i . (2)

When we use (2) directly to replace the product-gate in C, we can merge the outer sum-gate in (2)

with the output sum-gate from C and get a circuit of depth 3, same as C. However, the size would

become � �sd�, i.e. around sd which is too much for our purpose.

Note that (2) says that q(d) essentially is the elementary symmetric polynomial Ss,d,

q(d) = c Ss,d(`
0
1, . . . , `

0
s) .

The Newton Identities express elementary symmetric polynomials in terms of power sums Ps,k,

Ps,k(x1, . . . xs) =
s∑
i=1

xki .

Newton Identities are usually stated in the following form:

Lemma 4.2 (Newton Identities). For k 2 [s],

k Ss,k =
k∑
j=1

(−1)j−1 Ss,k−jPs,j (3)
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With some calculations, one can remove the recursion in (3) and derive the following formula

for Ss,d,

Ss,d = (−1)s
∑

j1,...,jd�0∑d
k=1 kjk=d

s∏
k=1

(−1)jk

jk! kjk
P
jk
s,k . (4)

We want to bound the size of the circuit that computes Ss,d according to (4). Polynomials P
jk
s,k

can be computed by a ΠΣΠ-circuit of size O(skjk) = O(ds2). Hence, for the product of these

polynomials, we get size O(ds3). Crucial for the circuit size is the size of the outer sum. The

number of summands in (4) is exactly the unordered partition number of d: For unordered

partitions, one considers the number of ways to write

d = a1 + a2 + � � �+ ad, where a1 � a2 � � � � � ad � 0. (5)

This is the same as the number of ways to write

d = j1 + 2j2 + � � �+ djd, where j1, j2, . . . , jd � 0.

Here jk denotes the number of terms ai equal to k in (5).

A known upper bound on the partition number of d is 2O(
p
d). Hence, polynomial Ss,d can be

computed by a ΣΠΣΠ-circuit of size 2O(
p
d) poly(s).

Remark. We made the assumption that the underlying �eld F has characteristic 0. The reason

are the denominators occurring in (4). Hence, we could also work with �elds of large enough

characteristic.

Lemma 4.3 (Set-multilinearization). Let C be an homogeneous circuit of size s and product-

depth ∆ that computes an n-variate set-multilinear polynomial over variable sets (X1, X2, . . . , Xd).

Then there is a circuit equivalent to C that is set-multilinear, of product-depth ∆ and size

dO(d) poly(s).

Proof. Let g be a gate in C that computes a polynomial of degree dg. Because C is homogeneous,

all monomials computed at g have the same degree dg. Our goal is to split gate g into its set-

multilinear parts. To do so, for any subset S � [d] of size |S| = dg, we create a copy gS of g that

computes the set-multilinear part of g restricted to S. This is done inductively in C, starting at

the input level.

If g is an input variable x 2 Xi, for some i 2 [d], then dg = 1 and we de�ne g{i} = x and g{j} = 0,

for j 6= i. Another case is that the input is just a constant c. Then dg = 0 and we de�ne g; = c.
Now let g be an inner gate, i.e. a + -gate or a � -gate.

• Case 1: g is + -gate, g = c1g
(1)+c2g

(2)+ � � �+crg(r), for some r � 1 and constants c1, c2, . . . , cr.
Then, for any S � [d] with |S| = dg, we de�ne

gS = c1g
(1)
S + c2g

(2)
S + � � � + crg(r)S .
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• Case 2: g is � -gate, g = g(1)g(2) � � �g(r), for some r � 1. Then, for any S � [d] with |S| = dg,

we de�ne

gS =
∑

(S1,S2,...,Sr) partition of S
|Si|=dg(i) , i=1,2,...,r

g
(1)
S1
g
(2)
S2
� � � g(r)Sr . (6)

Note that the depth of the circuit does not change because the sum in (6) can be merged with the

sum-gate in the next level. With respect to circuit size, for a + -gate, we get
� d
dg

� � 2d new gates,

and for a � -gate, we get  
d

dg

! 
dg

dg1 , dg2 , . . . , dgr

!
� 2d dd (7)

new gates. For the upper bound in (7), we show in Lemma 4.4 below, that the multinomial

coe�cient in (7) is bounded by dd. This proves the size bound of the lemma.

Lemma 4.4. Let d = d1 + d2 + � � �dr. Then 
d

d1, d2, . . . , dr

!
� dd .

Proof. By the Multinomial Theorem, we have

dd = (d1 + d2 + � � �+ dr)d =
∑

j1+j2+���+jr=d

 
d

j1, j2, . . . , jr

!
d
j1
1 d

j2
2 � � � djrr

�
 

d

d1, d2, . . . , dr

!
dd11 d

d2
2 � � � ddrr

Remark. 1. Recall that set-multilinear circuits are de�ned as a sub-class of homogeneous cir-

cuits. That is, the set-multilinear circuit constructed from a homogeneous circuit in Lemma 4.3

is homogeneous as well.

2. The increase in size in the set-multilinearization step by factor dO(d) is much larger than

the factor 2O(
p
d) in the homogenization step. If one could improve the factor for set-

multilinearization to 2O(
p
d) as well, one would get better lower bounds, actually exponential

lower bounds according to the LST-Sigact News Guest Column (2022).

Given circuit C with product-depth ∆ and size s that computes f, we �rst apply Lemma 4.1

to C and obtain homogeneous circuit C 0. Then we apply Lemma 4.3 to C 0 and end up with the

set-multilinear circuit C 00 with product-depth 2∆ and size dO(d) poly(s). The lower bound will be

shown for C 00. This also yields a lower bound for C.

The key idea of the proof is already present in the case ∆ = 1. That is, we prove Theorem 3.2

and show a lower bounds for ΣΠΣ-circuits. By the above transformation, this translates to proving

good enough lower bound for set-multilinear ΣΠΣΠΣ-circuits, i.e. of depth 5.
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5 The complexity measure

Let f be a set-multilinear polynomial over the sets of variables (X1, X2, . . . , Xd). We de�ne a

complexity measure µ(f) for f.

We split the variables into two parts. Let A � [d] and B = [d] −A. De�ne the set-multilinear

monomials over A and B,

MA = {m | m =
∏
i2A

xi , where xi 2 Xi },

MB = {m | m =
∏
i2B
xi , where xi 2 Xi }.

We de�ne the coe�cient matrix M(f) for f with respect to the partition A,B. Each monomial

fromMA orMB is assigned to a row or column ofM(f), respectively. For m1 2MA and m2 2MB,

the entry of M(f) at position (m1,m2) is the coe�cient of the monomial m1m2 in f.

M(f) = MA

MB

m2

m1

coe�f(m1m2)

The dimension of M(f) is |MA|� |MB|. Note that

|MA| =
∏
i2A

|Xi| and |MB| =
∏
i2B

|Xi|.

A special case is when one of A,B is empty. We de�ne M; = {1}. Then |M;| = 1 and M(f) is a

column vector when B = ;, and a row vector, when A = ;.
Remark. The coe�cient matrixM(f) is used in various contexts. It was for example used by Nisan

(1991) to prove lower bounds for algebraic branching programs. It is also called partial derivative

matrix or communication matrix of f. In automata theory it is generalized to the Hankel matrix

- not to be confused with the Hankel matrix in Linear Algebra.

We use the rank of M(f) as a complexity measure for f. Actually, it will turn out that it is

more convenient to consider a normalized version of the rank. In case of a square matrix, one

simply divides by the number of rows to normalize the maximum value to 1. However, we also have

the case of rectangular matrices. Then we have rank(Mf) � min{|MA|, |MB|}. Hence, one way to

normalize the rank could be to divide by min{|MA|, |MB|}. However, then we would not have some

of the properties we want. In particular, we want the measure to be additive and multiplicative as

stated in Lemma 5.1 below. That would not work with a division by min{|MA|, |MB|}.
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Instead, both values, |MA| and |MB| should go into the normalization. An idea is to use the

geometric mean of the dimensions,
p
|MA| |MB|. Recall that the geometric mean is closer to the

minimum than to the maximum:

min{|MA|, |MB|} �
q
|MA| |MB| � |MA|+ |MB|

2
� max{|MA|, |MB|} .

The complexity measure µ(f) is de�ned as the relative-rank of M(f), denoted by rel-rank,

µ(f) = rel-rank(M(f)) =
rank(M(f))p
|MA| |MB|

. (8)

Remark. Nisan and Wigderson (1997) worked with a normalized measure as well. It was based on

the dimension of the partial derivative space of f instead of the rank of the coe�cient matrix.

From Linear Algebra rules for the rank, we get that the relative rank additive and multiplicative.

Lemma 5.1 (Properties of µ). Let f, g be set-multilinear polynomials.

1. Upper bound. For any partition A,B of the variable sets,

µ(f) � min

{s
|MA|

|MB|
,

s
|MB|

|MA|

}
.

In particular, µ(f) � 1.

2. Sub-additivity. If f and g are de�ned via the same partition A,B, then f + g is set-

multilinear and

µ(f+ g) � µ(f) + µ(g).

3. Multiplicativity. If f and g are de�ned via disjoint sub-partitions, then fg is set-

multilinear and

µ(fg) = µ(f)µ(g).

For the multiplicativity, note that coe�cient matrix M(fg) is a Kronecker product of M(f)

and M(g). A common notation is M(fg) =M(f)
M(g). Thereby the rank multiplies.

We mention two more properties of the relative rank that we will use.

1. One reason why we normalized the rank can be observed at a product q = f1f2 � � � fk. Since
all measures are bounded by 1, any µ(fi) is an upper bound on µ(q),

µ(q) � µ(fi), for all i.

Hence, this gives an easy way to bound the measure for q.

2. Maybe the most important property for us is that, for rectangular matrices, the measure is

strictly less than 1. Consider an a � b coe�cient matrix M, where b is smaller than a, say

b = a1−δ, for some δ > 0. Suppose M has full rank b. Then, if we would have de�ned the

7



measure by dividing by the shorter side, i.e. b, we would get measure 1. With our above

de�nition (8) of the measure, we get by Lemma 5.1 (1) the bounds
a1−δ

a
=

1

aδ/2
.

This loss in the measure, compared with measure 1, will be crucial in the lower bound

argument.

5.1 Example 1: Iterated Matrix Multiplication (IMM)

Given m�m matrices X1, X2, . . . , Xd, for some m,d � 1, we already de�ned

IMMm,d(X1, X2, . . . , Xd) = (X1X2 � � �Xd)1,1.

For an explicit formula, let Xk =
�
x
(k)
i,j

�
1�i,j�m. Then we have

IMMm,d =
∑

i1,i2,...,id−12[m]

x
(1)
1,i1
x
(2)
i1,i2

x
(3)
i2,i3

� � � x(d)id−1,1

Observe that IMMm,d is set-multilinear of degree d over n = dm2 variables.

We consider the coe�cient matrixM(IMMm,d). We assume that d is even and split the variables

into odd and even indices. That is, let A = {1, 3, . . . d− 1} and B = {2, 4, . . . , d}. Now observe that

for any monomial x
(1)
1,i1
x
(3)
i2,i3

� � � x(d−1)id−2,id−1
2 MA, there is precisely one monomial in MB, namely

x
(2)
i1,i2

x
(4)
i3,i4

� � � x(d)id−1,1, such that the product appears in IMMm,d, and vice versa. Hence,M(IMMm,d)

is the identity matrix and therefore has full rank md. With respect to the relative rank measure,

we conclude that µ(IMMm,d) = 1.

M(IMMm,d) : x
(2)
j1,j2

x
(4)
j3,j4

� � � x(d)jd−1,1

x
(1)
1,i1
x
(3)
i2,i3

� � � x(d−1)id−2,id−1

coe�(x
(1)
1,i1
x
(3)
i2,i3

� � � x(d−1)id−2,id−1
x
(2)
j1,j2

x
(4)
j3,j4

� � � x(d)jd−1,1)

=

{
1, if (i1, i2, . . . , id−1) = (j1, j2, . . . , jd−1),

0, otherwise.

On the other, we show next that any set-multilinear circuit of depth 3 over variables X1, X2, . . . , Xd
has small measure µ. That is, we now consider each matrix Xi from above simply as a set of m2

variables.
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Let C be set-multilinear ΣsΠΣ-circuit that computes polynomial f. Let A,B be a partition of

the variables.

The sum-gates above the input level of C compute linear polynomials. Since C is set-multilinear,

each such linear polynomial ` must only involve a single part Xi of the variables. Hence, depending

on whether i is in A or B, in the sub-partition for M(`), say A`, B`, we have A` = {i} and B` = ;,
or vice versa. Recall from the de�nition that then matrix M(`) is either a column or a row vector.

Therefore, for ` 6= 0, we have rank(M(`)) = 1, and hence

µ(`) =
1p
|Xi|

.

Let q be the polynomial computed at a product-gate of C. Because C is and set-multilinear

of degree d, exactly d sum gates feed into the product-gate, one for each set of variables Xi, for

i = 1, 2, . . . , d. Therefore, by the multiplicativity of µ, we get

µ(q) =
1p

|X1| � � � |Xd|
.

Finally, we can use the sub-additivity of µ for the sum at the output-gate of C. It has fan-in s.

Hence, we get

µ(f) � sp
|X1| � � � |Xd|

. (9)

Recall that |Xi| = m
2. Hence, from (9) we get µ(f) � s

md

Now consider f = IMMm,d. Because µ(IMMm,d) = 1, we get s � md.

Recall that the number of variables is n = dm2. When we further assume that d = O(logn),

we get

md =

�
n

d

�d
2

= nΩ(d).

Theorem 5.2. Let d = O(logn). Any set-multilinear ΣsΠΣ-circuit that computes polyno-

mial IMMm,d has size at least

s � md = nΩ(d).

5.2 Example 2: Product of Inner Products (PIP)

The Product of Inner Products problem is de�ned as follows. Given vectors X1, X2, . . . , Xd of

lengthm, for somem,d � 1. The task is to compute the product of the inner product of subsequent

pairs of vectors,

PIPm,d(X1, X2, . . . , Xd) =

d/2∏
k=1

X2k−1 X2k.

We assume again that d is even. For an explicit formula, let Xk =
�
x
(k)
i

�
1�i�m. Then we have

PIPm,d =

d/2∏
k=1

m∑
i=1

x
(2k−1)
i x

(2k)
i (10)

9



Observe that PIPm,d is set-multilinear of degree d over n = dm variables.

We consider the coe�cient matrix M(PIPm,d). We split the variables again into odd and

even indices, A = {1, 3, . . . d − 1} and B = {2, 4, . . . , d}. Similar as for IMM, for any monomial

x
(1)
i1
x
(3)
i2
� � � x(d−1)id−1

2 MA, there is precisely one monomial in MB, namely x
(2)
i1
x
(4)
i2
� � � x(d)id−1 , such

that the product appears in PIPm,d, and vice versa. Hence, also M(PIPm,d) is the identity matrix

and µ(PIPm,d) = 1.

Hence, we get again a lower bound against set-multilinear ΣΠΣ-circuits similar as for IMM.

However, note that (10) gives ΠΣΠ-circuit for PIPm,d of size O(md). So we see that circuits with

product-depth 2, i.e. of depth 4, or even ΠΣΠ-circuits, can have measure 1. It seems as our lower

bound technique only works for product-depth 1, i.e. up to set-multilinear ΣΠΣ-circuits of depth 3.

Recall that we would need lower bounds against set-multilinear circuits of depth 5 in order to get

lower bounds for general circuits of depth 3.

Remark. A di�erent technique to prove lower bounds is the Shifted Partial Derivative Measure

introduced by Kayal (2012). It was used by Gupta, Kamath, Kayal, and Saptharishi (2014) to show

a mΩ(
p
d) lower bound for set-multilinear circuits of depth 4 that compute IMMm,d. Also here it

seems as the techniques does not extend to depth 5.

5.3 Summarizing the technique so far and an idea what to change

In the above examples, we start out with a polynomial that is supposed to be hard for the class of

circuits under consideration, like IMM or PIP. Note that with these polynomials, we already de�ne

the variable sets X1, X2, . . . , Xd. Also, to get measure one, the polynomials de�ne the partition A,B

of the variable sets. All this is �xed when we now try to bound the measure µ for set-multilinear

circuits that compute the hard polynomial. Recall that the coe�cient matrix, and hence the

measure, depends on this setting.

Consider again the ΠΣΠ-circuit for PIP according to (10). The coe�cient matrix of the inner

product parts, M(X2k−1X2k), is the identity matrix, i.e. a square matrix of full rank. The degree

of the monomials is small, only 2. Then the outer product simply multiplies the measure 1 inner

product parts to a measure 1 circuit for PIP.

So the problem with the ΠΣΠ-circuit is that already the inner ΣΠ-circuits have measure 1.

Note that this is not in contradiction with the small measure we proved for depth 3 circuits above:

These circuits computed the �nal polynomial of degree d, whereas here, we consider intermediate

gates that compute small degree polynomials, degree 2 in case of PIP. Hence, the question now is:

Is there a way to change the setting, so that the inner ΣΠ-circuits have smaller measure?

Note that the set-up for PIP is nicely tailored: all variable sets Xk have the same size which

results in the square matrix M(X2k−1X2k) of full rank. A simple way to disturb the full rank

would be to de�ne sets Xk of di�erent sizes so that the resulting coe�cient matrix of the inner

ΣΠ-circuits is no longer square, but rectangular. Then the rank is bounded by the length of the

shorter side of the rectangle, i.e., we get some loss in their rank. This loss in the rank should be

signi�cant enough so that the overall circuit has a small measure.

The idea we try to pursue now is as follows: Come up with a setting of variable sets Xk of

di�erent sizes, such that with respect to a ΣΠΣΠΣ-circuit of depth 5, the inner ΣΠΣ-circuits have

rectangular coe�cient matrices, such that the loss in their rank implies a small measure of the
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overall circuit of depth 5. Clearly, one also has to adapt the hard polynomial to the new setting.

In the next section, we will de�ne such a set-up and show that the above idea indeed works.

Note that the same idea of unbalancing coe�cient matrices was already used before to obtain

lower bounds, for example for multilinear formulas by Raz (2004), or for multilinear circuits by

Raz, Shpilka, Yehudayo� (2008).

6 Proof of Theorem 3.2

We de�ne a variable setting and a hard polynomial of measure 1. Then we show that circuits in

this setting have small measure, �rst for depth 3, then for depth 5.

6.1 The hard polynomial

Let X1, X2, . . . , Xd be disjoint sets of variables. For some t � d, we split them at t into

A = [t] and B = [d] − [t].

The variable sets have di�erent sizes. The size of the A-sets we denote by m which is a power of 2,

i.e. m = 2k, for some k. The size of the B-sets is m1−δ, for δ = 1

2
p
d
, and should be a power of 2 as

well, m1−δ = 2`, for some `.

|Xi| =

{
m = 2k, for i 2 A,
m1−δ = 2

k(1− 1

2
p
d
)
= 2`, for i 2 B.

(11)

X1 X2 Xt

A : m elements each

Xt+1 Xt+2 Xt+3 Xd

B : m1−δ elements each

Figure 1: The variables are split into two groups A and B, where A has a smaller number t < d/2

of sets of larger size m and B has a larger number d − t > d/2 of sets of smaller size m1−δ. The

parameters are chosen such that the number of set-multilinear monomials build from A and B are

the same, i.e. |MA| = |MB|.

By n we denote again the total number of variables. Note that n � md.
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Actually, because of the square root involved in δ, we may need to round the expression to

de�ne `. For simplicity, we ignore such issues for now. Because we want ` = k(1 − 1

2
p
d
) < k, we

should have k � 2pd. Since k = logm, this implies d � log2m
4 . Hence, the construction implies a

bound on the degree in terms of the number of variables.

Because the set sizes are powers of 2, we can enumerate the variables by 0-1-words of length k

and `, respectively. That is, let

Xi = { x
(i)
α | α 2 {0, 1}k }, for i 2 A,

Xi = { x
(i)
β | β 2 {0, 1}` }, for i 2 B.

We choose the splitting point t such that the coe�cient matrix is a square matrix. We have

|MA| = mt = 2kt and |MB| = m(1−δ)(d−t) = 2`(d−t). Hence, we choose t such that

kt = `(d− t).

So we de�ne t = d`
k+` . Again, we would have to round the expression to be precise.

The point of the somewhat involved setup so far is that we will show below that any polynomial

computed by a set-multilinear circuit of depth 5 has small measure µ. To get a lower bound, we

need an explicit polynomial with high measure. The polynomial we de�ne is a modi�ed IMM kind

of polynomial, denoted mIMM.

mIMMm,d =
∑

α1���αt =β1���βd−t 2 {0,1}kt

x
(1)
α1 � � � x(t)αt x(t+1)β1

� � � x(d)βd−t , (12)

where the sum is over all α1, . . . , αt 2 {0, 1}k and β1, . . . , βd−t 2 {0, 1}`. Note that once α1, . . . , αt
are chosen, then β1, . . . , βd−t 2 {0, 1}` are uniquely determined to get a monomial from mIMMm,d,

and vice-versa. Therefore M(mIMMm,d) is a permutation matrix which has full rank. Hence, we

have µ(mIMMm,d) = 1.

Remark. 1. Formally, one can show that mIMMm,d is a projection of IMMm,d. This can be seen

by representing the polynomials as arithmetic branching programs (ABP). For IMM one

can construct the obvious ABP. For mIMM it is slightly more tricky. One has to interleave

the α-variable with β-variables appropriately to get a poly-size ABP. It follows that a lower

bound for mIMMm,d implies the same lower bound for IMMm,d.

2. The exposition here is simpli�ed because we skip the rounding of some of the expressions

as mentioned above. If one does precise calculations, i.e. by considering rounded numbers,

matrixM(mIMMm,d) might no longer be a square matrix and one has to adapt the de�nition

of mIMMm,d in (12) because the α-string might have a di�erent length than the β-string.

Still one can show that µ(mIMMm,d) is close enough to 1 to obtain the desired lower bound.

The original paper [LST21] has all the details.

6.2 Lower bounds for set-multilinear ΣΠΣ-circuits

Already in Section 5.1, we showed how to bound the measure for ΣΠΣ-circuits. This works very

similar in the new variable setting.
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Let X1, X2, . . . , Xd be sets of variables and A,B be a partition as de�ned in the previous section,

and let C be a set-multilinear ΣsΠΣ-circuit over these variables that computes some polynomial f.

By the same arguments as in Section 5.1, we get again Equation (9),

µ(f) � sp
|X1| � � � |Xd|

.

Recall Equation (11) that we de�ned the sets Xi such that |Xi| � m1−δ, for i = 1, 2, . . . , d, where

δ = 1

2
p
d
. Plugging this into (9), we get

µ(f) � sp
|X1| � � � |Xd|

� s

m
d
2
(1− 1

2
p
d
)
� s

m
d
4

. (13)

We apply the bound (13) to polynomial f = mIMMm,d de�ned in Section 6.1. Recall that

µ(mIMMm,d) = 1.

Theorem 6.1. Any set-multilinear ΣsΠΣ-circuit that computes polynomial mIMMm,d has size

at least

s � md
4 . (14)

Recall that the number of variables is n � md and we assume d = O(logn). When we write

the bound given in (14) in n instead of m, we get

s �
�
n

d

�d
4

= nΩ(d).

6.3 Lower bounds for set-multilinear ΣΠΣΠΣ-circuits

Let X1, X2, . . . , Xd be sets of variables and A,B be a partition as de�ned in Section 6.1, and let C

be a set-multilinear ΣΠΣΠΣ-circuit over these variables that computes some polynomial f.

Let q be one of the polynomials that is computed at a product gate below the output
∑
-gate

of C. That is, polynomial q is computed by a ΠΣΠΣ-circuit. Let

q = f1 � � � fk,

where each fi is computed by a ΣsiΠΣ-circuit. Recall that all the component circuits are also set-

multilinear. Still, the fi's can have di�erent degrees. But we know that
∑k
i=1 deg(fi) = deg(q) = d.

The high-level idea. In case of a ΣΠΣ-circuit as in Section 6.2, the fi's would already be the

bottom layer of linear polynomials and the coe�cient matricesM(fi) would have small rank, namely

rank 1. In our case now, the fi's are themselves computed by ΣΠΣ-circuits, and it seems hard to

say anything useful about M(fi) and its rank.

• An easy case is when one of the fi's has small measure. By (13), this is when some fi has

a high degree. Now we see the advantage of working with the relative rank instead of the

rank: Since the µ-values are � 1, any single µ(fi) is an upper bound on µ(q). Now this single

sub-circuit will give already a good enough upper bound on µ(q)
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• The hard case is when all fi's have small degree. Recall that we set parameters such that the

coe�cient matrix M(f) is a square matrix. The matrices M(fi) have smaller dimensions on

sub-partitions of (X1, X2, . . . , Xd). Recall that some of the Xi's have size m
1−δ.

The main point now is that matrices M(fi) turn out to be rectangular. It is not possible for

them to be square when the fi's have small degree. The simple fact that the rank of M(fi)

is bounded by the shorter side of the rectangle gives a good enough loss of the rank for us

with respect to the longer side. This will imply a small relative rank.

The details. In order to get a bound on the relative rank of q, we distinguish two cases according

to the degrees of the fi's. Without loss of generality, let f1 have the largest degree among f1, . . . , fk.

Case 1: deg(f1) = d1 �
p
d. In this case, it su�ces to consider the sub-circuit for f1 for a size

bound. We do a similar calculation as in Section 6.2.

Let f1 be set-multilinear over the sub-partition (Xi1 , . . . , Xid1 ). Similar as in Equation (9)

and (13) we get

µ(f1) � s1q
|Xi1 | � � � |Xid1 |

<
s1

m

p
d
2

(1− 1

2
p
d
)
� s1

m
p
d
4

.

Because µ is multiplicative, we have µ(q) =
∏k
i=1 µ(fi). Since the µ-values are � 1, we get

µ(q) � µ(f1) � s1

m
p
d
4

. (15)

Case 2: deg(f1) <
p
d. Each fi is set-multilinear over a sub-partition (Xi1 , Xi2 , . . . , Xidi ), for all

i 2 [k]. In the sub-partition of fi, let Ai � A be the sets from A, i.e. of size m, and Bi � B be the

number of sets from B, i.e. of size m1−δ. Let ai = |Ai| and bi = |Bi|. Then ai + bi = deg(fi) <
p
d.

Xi1 Xiai

Ai

Xiai+1 Xiai+2 Xiai+bi = Xidi

Bi

fi :

The coe�cient matrix M(fi) has |MA| = mai rows and |MB| = (m1−δ)bi = mbi(1−δ) columns,

for all i 2 [k]. We apply the upper bound µ(fi) � min

{r
|MAi |

|MBi |
,

r
|MBi |

|MAi |

}
given in Lemma 5.1 (1).
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1. If |MAi | � |MBi |, then

µ(fi) �
s

|MAi |

|MBi |
=

1

m(bi(1−δ)−ai)/2
.

2. If |MAi | > |MBi |, then

µ(fi) �
s

|MBi |

|MAi |
=

1

m(ai−bi(1−δ))/2
.

In summary of the two cases, we get

µ(fi) � 1

m|ai−bi(1−δ)|/2
. (16)

The maximum value of the right hand side in (16) is when the exponent |ai−bi(1−δ)| = |ai−bi+biδ|

is minimal. Recall that bi <
p
d and δ = 1

2
p
d
. Hence, we have 0 � biδ < 1/2. It follows that the

exponent |ai − bi + biδ| is minimal for ai = bi = deg(fi)/2. In this case, we have

1

2
|ai − bi + biδ| =

1

2
biδ =

1

2

deg(fi)

2

1

2
p
d
=

deg(fi)

8
p
d
. (17)

Hence, by (16), we get

µ(fi) � 1

m
deg(fi)

8
p
d

.

Equation (17) is the core of the whole argument. If the exponent 1
2 |ai − bi + biδ| could be 0,

we would only get a trivial and useless bound of 1
m0

= 1 on µ(fi). By (17), the exponent is in

a distance to 0 that depends on d and the degree of fi. This is due to the di�erent sizes of the

variable sets Xj and the choice of the other parameters. As a consequence, the relative rank of

the fi's smaller than 1.

By multiplicativity, we get

µ(q) =
k∏
i=1

µ(fi) � 1

m
d

8
p
d

=
1

m
p
d
8

. (18)

The bounds (15) and (18) we get from the two cases, together with the additivity property of µ

yield

µ(f) � s

m
p
d
8

, (19)

where s is the size of C.

We apply the bound (19) to f = mIMMm,d. Recall that µ(mIMMm,d) = 1.

Theorem 6.2. Let d,m and n � dm2 such that d = O(logn). Any set-multilinear ΣΠΣΠΣ-

circuit that computes polynomial mIMMm,d has size s at least

s � m
p
d
8 = nΩ(

p
d).
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To get a lower bound for general ΣΠΣ-circuits, we have to reverse the transformations from

Lemmas 4.1 and 4.3. The lemmas increase the size of the circuit by a factor dO(d). Note that for

d = O(logn), from sdO(d) � nΩ(
p
d) it still follows that s � nΩ(

p
d).

Corollary 6.3. Let d,m and n � dm2 such that d = O(logn). Any ΣΠΣ-circuit that computes

polynomial mIMMm,d has size s at least

s � nΩ(
p
d).

The lower bounds for larger depth circuits proceeds along similar lines, with some technical

changes. Observe that in the above argument, at least in the second case, we did not really use

that the fi's are computed by ΣΠΣ-circuits, i.e. in depth 3. A similar argument works when fi's

are computed by larger depth circuits.

7 Follow-up work

The same authors, Limaye, Srinivasan and Tavenas (2022) showed limits of the current technique:

It is not possible to show lower bounds of the form md
1

poly(∆)
by this technique.

Deepanshu Kush and Shubhangi Saraf (2022) showed slightly improved lower bounds for another

class of polynomials, often called the Nisan-Wigderson polynomials. They follow in part the

technique presented here. However, they return to equal size variable sets Xk and instead choose

the partition sets A and B uniformly at random.

Motivated by the LST-technique, Amireddy, Garg, Kayal,Saha, Thankey (2022) showed that

the same bounds can also be derived via the shifted partial derivative method. They observe that

the unbalancing technique can be carried over to the shifted partial derivative setting in some sense.

An interesting aspect of their work is that they work directly with the homogenized polynomial

and skip the set-multilinearization step. This results in slightly improved lower bounds.
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